Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nutrition ; 123: 112414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38564838

ABSTRACT

OBJECTIVE: Cross-sectional evidence has demonstrated that parallel reactance obtained by bioelectrical impedance analysis (BIA) may be an alternative to the regularly used series of measurements to predict intracellular water (ICW) in athletes. However, we are not aware of any studies that have determined the predictive role or compared the effectiveness of both series and parallel reactance for tracking ICW changes during an athletic season. The main aim of this study was to determine the predictive role and compare both series and parallel reactance (Xc) in tracking ICW during an athletic season. RESEARCH METHODS AND PROCEDURES: This longitudinal study analyzed 108 athletes in the preparatory and competitive periods. Using dilution techniques, total body water (TBW) and extracellular water (ECW) were determined and ICW was calculated. Resistance (R), Xc, and impedance (Z) standardized for height were obtained through BIA spectroscopy using a frequency of 50kHz in a series array and then mathematically transformed in a parallel array. RESULTS: Multiple regression analyses showed that only changes in parallel Xc and capacitance (CAP) (P < 0.05) were predictors of delta ICW during the sports season. In contracts, this was not the case for Xcs. Both changes in R and Z, series and parallel, predicted similarly the changes in ECW and TBW (P < 0.05) in athletes. CONCLUSION: Our findings highlight the potential of parallel BIA values to detect changes in body water compartments over a competitive season. These data provide preliminary evidence that changes in parallel Xc/H, and ultimately CAP, represent valid markers of alterations in cell volume during a sports season.


Subject(s)
Athletes , Body Composition , Body Water , Electric Impedance , Sports , Humans , Athletes/statistics & numerical data , Male , Longitudinal Studies , Young Adult , Female , Sports/physiology , Adult , Seasons , Cross-Sectional Studies , Adolescent
2.
Br J Nutr ; 131(9): 1579-1590, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38299306

ABSTRACT

We aim to understand the effects of hydration changes on athletes' neuromuscular performance, on body water compartments, fat-free mass hydration and hydration biomarkers and to test the effects of the intervention on the response of acute dehydration in the hydration indexes. The H2OAthletes study (clinicaltrials.gov ID: NCT05380089) is a randomised controlled trial in thirty-eight national/international athletes of both sexes with low total water intake (WI) (i.e. < 35·0 ml/kg/d). In the intervention, participants will be randomly assigned to the control (CG, n 19) or experimental group (EG, n 19). During the 4-day intervention, WI will be maintained in the CG and increased in the EG (i.e. > 45·0 ml/kg/d). Exercise-induced dehydration protocols with thermal stress will be performed before and after the intervention. Neuromuscular performance (knee extension/flexion with electromyography and handgrip), hydration indexes (serum, urine and saliva osmolality), body water compartments and water flux (dilution techniques, body composition (four-compartment model) and biochemical parameters (vasopressin and Na) will be evaluated. This trial will provide novel evidence about the effects of hydration changes on neuromuscular function and hydration status in athletes with low WI, providing useful information for athletes and sports-related professionals aiming to improve athletic performance.


Subject(s)
Athletes , Body Water , Dehydration , Adult , Female , Humans , Male , Young Adult , Athletic Performance/physiology , Body Composition , Drinking/physiology , Electromyography , Exercise/physiology , Hand Strength/physiology , Organism Hydration Status , Water-Electrolyte Balance/physiology , Randomized Controlled Trials as Topic
3.
Eur J Clin Nutr ; 78(3): 209-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087045

ABSTRACT

BACKGROUND/OBJECTIVES: Accurate assessments of energy intake (EI) are needed in lifestyle interventions to guarantee a negative energy balance (EB), thereby losing weight. This study aimed (1) to compare objectively measured and self-reported EI and (2) to determine the predictors of underreporting divided by sex, adiposity and BMI category. METHODS: Seventy-three participants [mean (SD): 43.7 (9.2) years, BMI = 31.5 (4.5) kg/m2, 37% females] of the Champ4Life intervention were included in this study. EI was measured using the "intake-balance method" and self-reported through 3-day food records. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry. Bland-Altman analysis was performed to compare both EI assessments. RESULTS: Self-reported EI was lower than measured EI during both neutral (-355 kcal/d) and negative EB (-570 kal/day). While no significant trends were observed for EI evaluation in either neutral (p = 0.315) or negative EB (p = 0.611), limits of agreement were wide (-1720 to 1010 and -1920 to 779 kcal/day, respectively). In females, the degree of misreporting (kcal/day and %) was predicted by weight (p = 0.032 and p = 0.039, respectively) and FM (p = 0.029 and p = 0.037, respectively). In males, only BMI (p = 0.036) was a predictor of misreporting (kcal/day). CONCLUSION: Self-reported EI did not agree with measured EI. Our results show that larger body size was associated with higher levels of underestimation for EI (females only). Nevertheless, misreporting EI is a complex issue involving more associations than merely body composition. A deeper understanding could inform counseling for participants filling out food records in other to reduce misreporting and improve validity.


Subject(s)
Body Composition , Obesity , Male , Female , Humans , Diet Records , Energy Intake , Energy Metabolism , Body Mass Index
4.
Appetite ; 193: 107162, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38101517

ABSTRACT

INTRODUCTION: Behavioral compensations may occur as a response to a negative energy balance. The aim of this study was to explore the associations between changes in energy intake (EI) and changes in physical activity (PA, min/day; kcal/d) as a response to a weight loss (WL) intervention and to understand if interindividual differences occur in EI and energy expenditure (EE). METHODS: Eighty-one participants [mean (SD): age = 42.8 (9.4)y, BMI = 31.2 (4.4)kg/m2, 37% females] divided in intervention (IG, n = 43) and control group (CG, n = 38) were included. The IG underwent a moderate energy restriction (300-500 kcal/d). EI was measured through the intake-balance method. Non-exercise PA (NEPA) and exercise (through logbook) were assessed by accelerometery. The EE in NEPA (NEAT) and in exercise (EiEE) was calculated by applying the Freedson Combination'98 algorithm over the time spent in these activities. Pearson correlations were performed in IG to examine associations between EE components, EI and body composition. To understand if interindividual differences were observed, the SD of individual response (SDIR) and the smallest worthwhile change (SWC, SDbaselineCG×0.2) were calculated. RESULTS: Changes in EI [Δ EI, (kcal/d)] was negatively associated with Δ exercise (min/d:r = -0.413, p = 0.045; %:r = -0.846, p = 0.008) and with Δ EiEE (kcal/d:r = -0.488, p = 0.016; %:r = -0.859, p = 0.006). A negative correlation was found between Δ sedentary time and Δ NEPA (min/d:r = -0.622, p = 0.002; %:r = -0.487, p = 0.018). An interindividual variability was found for EI(SDIR = 151.6, SWC = 72.3) and EE (SDIR = 165, SWC = 134). CONCLUSIONS: Decreases in EI were not associated to compensatory responses such as decreases in PA and/or increases in sedentary time. Interindividual variability was found for EI and EE. Nevertheless, behavioral compensations and the interindividual variability should be considered when implementing WL interventions, to increase the likelihood of achieving sustainable results. (clinicaltrials.gov ID: NCT03031951).


Subject(s)
Energy Intake , Health Expenditures , Female , Humans , Adult , Male , Energy Intake/physiology , Weight Loss , Exercise/physiology , Energy Metabolism/physiology
5.
J Hematol Oncol ; 16(1): 104, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37705050

ABSTRACT

Diagnosing post-transplant lymphoproliferative disorder (PTLD) is challenging and often requires invasive procedures. Analyses of cell-free DNA (cfDNA) isolated from plasma is minimally invasive and highly effective for genomic profiling of tumors. We studied the feasibility of using cfDNA to profile PTLD and explore its potential to serve as a screening tool. We included seventeen patients with monomorphic PTLD after solid organ transplantation in this multi-center observational cohort study. We used low-coverage whole genome sequencing (lcWGS) to detect copy number variations (CNVs) and targeted next-generation sequencing (NGS) to identify Epstein-Barr virus (EBV) DNA load and somatic single nucleotide variants (SNVs) in cfDNA from plasma. Seven out of seventeen (41%) patients had EBV-positive tumors, and 13/17 (76%) had stage IV disease. Nine out of seventeen (56%) patients showed CNVs in cfDNA, with more CNVs in EBV-negative cases. Recurrent gains were detected for 3q, 11q, and 18q. Recurrent losses were observed at 6q. The fraction of EBV reads in cfDNA from EBV-positive patients was 3-log higher compared to controls and EBV-negative patients. 289 SNVs were identified, with a median of 19 per sample. SNV burden correlated significantly with lactate dehydrogenase levels. Similar SNV burdens were observed in EBV-negative and EBV-positive PTLD. The most commonly mutated genes were TP53 and KMT2D (41%), followed by SPEN, TET2 (35%), and ARID1A, IGLL5, and PIM1 (29%), indicating DNA damage response, epigenetic regulation, and B-cell signaling/NFkB pathways as drivers of PTLD. Overall, CNVs were more prevalent in EBV-negative lymphoma, while no difference was observed in the number of SNVs. Our data indicated the potential of analyzing cfDNA as a tool for PTLD screening and response monitoring.


Subject(s)
Cell-Free Nucleic Acids , Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Humans , DNA Copy Number Variations , Epigenesis, Genetic , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Lymphoproliferative Disorders/genetics , Cell-Free Nucleic Acids/genetics , Genomics
6.
Scand J Med Sci Sports ; 33(10): 1998-2008, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37403709

ABSTRACT

BACKGROUND: The aim of this study was to determine the predictive role of series and parallel bioelectrical impedance-derived parameters in predicting total body (TBW), intracellular (ICW), and extracellular water (ECW) in athletes. METHODS: This cross-sectional study analyzed 134 male (21.33 ± 5.11 years) and 64 female (20.45 ± 5.46 years) athletes. Using dilution techniques, TBW and ECW were determined while ICW was the difference between both. Raw and standardized for height (/H) bioelectrical resistance (R), reactance (Xc), and impedance (Z) values were obtained using a phase-sensitive device at a single frequency in a series array (s). These were mathematically transformed in a parallel array (p) and capacitance (CAP). Fat-free mass (FFM) was assessed by dual-energy X-ray absorptiometry. RESULTS: Multiple regressions adjusted for age and FFM show that R/Hs, Z/Hs, R/Hp, and Z/Hp were significant predictors of TBW (p < 0.001 in females and males). While Xc/Hs did not predict ICW, Xc/Hp was a predictor (p < 0.001 in females and Males). In females, R/H and Z/H predicted similarly TBW, ICW, and ECW. In males, R/Hs was considered a better predictor than R/Hp for TBW and ICW, and the Xc/Hp was considered the best predictor for ICW. Another significant predictor of ICW was CAP (p < 0.001 in females and males). CONCLUSION: This study highlights the potential value of parallel bioelectrical impedance values to identify fluid compartments in athletes as an alternative to the regularly used series measurements. Moreover, this study supports Xc in parallel, and ultimately CAP, as valid indicators of cell volume.


Subject(s)
Athletes , Body Water , Humans , Male , Female , Electric Impedance , Cross-Sectional Studies , Water , Body Composition
7.
Endocrine ; 81(3): 450-454, 2023 09.
Article in English | MEDLINE | ID: mdl-37191938

ABSTRACT

Dual modulation of the MAPK pathway with BRAF (e.g., dabrafenib) and MEK (e.g., trametinib) inhibitors has the potential to re-establish radioiodine (RAI) sensitivity in BRAF-mutated RAI-refractory (RAI-R)-differentiated thyroid carcinoma (DTC) cells. Here we showed that (1) double BRAF/MEK inhibition may still reach a significant redifferentiation in patients with a long-history RAI-R DTC and multiple previous treatments; (2) the addition of high RAI activities may obtain a significant structural response in such patients; and (3) a divergence between increasing thyroglobulin and structural response may be a reliable biomarker or redifferentiation. Accordingly, the add-on prescription of high activities of 131I should be considered in RAI-R patients under multikinase inhibitors with stable or responding structural disease and divergent increase of Tg levels.


Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases
9.
Scand J Med Sci Sports ; 33(7): 1072-1078, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36951582

ABSTRACT

Physiological differences have been reported between individuals who have habitual low (LOW) and high (HIGH) water intake (WI). The aims of this study were to explore body water compartments, hydration status, and fat-free mass (FFM) hydration of elite athletes exposed to different habitual WI. A total of 68 athletes (20.6 ± 5.3 years, 23 females) participated in this observational cross-sectional study. Total WI was assessed by seven-day food diaries and through WI, athletes were categorized as HIGH (n = 28, WI≥40.0 mL/kg/d) and LOW (n = 40, WI≤35.0 mL/kg/d). Total body water (TBW) and extracellular water (ECW) were determined by dilution techniques and intracellular water (ICW) as TBW-ECW. Hydration status was assessed by urine-specific gravity (USG) using a refractometer. Fat (FM) and FFM were assessed by dual-energy X-ray absorptiometry (DXA). The FFM hydration was calculated by TBW/FFM. The USG was statistically different between groups for females (LOW: 1.024 ± 0.003; HIGH: 1.015 ± 0.006; p = 0.005) and males (LOW: 1.024 ± 0.002; HIGH: 1.018 ± 0.005; p < 0.001). No differences between groups were detected in body water compartments and FFM hydration in both sexes (p > 0.05). Multiple regression showed that WI remains a predictor of USG regardless of FFM, age, and sex (ß = -0.0004, p < 0.01). We concluded that LOW athletes were classified as dehydrated through USG although their water compartments were not different from HIGH athletes. These results suggest that LOW athletes may expectedly maintain the body water compartments' homeostasis through endocrine mechanisms. Interventions should be taken to encourage athletes to have sufficient WI to maintain optimal hydration.


Subject(s)
Body Water , Drinking , Male , Female , Humans , Body Water/physiology , Athletes , Water , Absorptiometry, Photon/methods , Body Composition/physiology
10.
Eur J Sport Sci ; 23(8): 1761-1770, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36377398

ABSTRACT

Lack of efficacy of weight loss(WL) interventions is attributed in-part to low adherence to dietary/physical activity(PA) recommendations. However, some compensation may occur in PA as a response to energy restriction such as a decrease in non-exercise PA(NEPA) or non-exercise activity thermogenesis(NEAT). The current study aim was (1) to investigate whether adaptive thermogenesis(AT) in NEAT occurs after WL, and (2) to understand the associations of these compensations with WL. Ninety-four former athletes [mean±SD, age: 43.0±9.4y, BMI: 31.1±4.3 kg/m2, 34.0% female] were recruited and randomly assigned to intervention or control groups (IG, CG). The IG underwent a one-year lifestyle WL-intervention; no treatments were administered to the CG. PA was measured using accelerometery and NEAT was predicted with a model including sample baseline characteristics. AT was calculated as measuredNEAT4mo/12mo(kcal/d)-predictedNEAT4mo/12mo(kcal/d)-measuredNEATbaseline(kcal/d)-predictedNEATbaseline(kcal/d). Dual-energy x-ray absorptiometry was used to assess fat-free mass and fat mass. No differences were found in the IG for NEAT or NEPA after WL. Considering mean values, AT was not found for either group. The SD of individual response (SDIR) for AT was -2(4-months) and 24(12-months) (smallest worthwhile change = 87kcal/d), suggesting that the interindividual variability regarding AT in NEAT is not relevant and the variability in this outcome might reflect a large within-subject variability and/or a large degree of random measurement error. No associations were found between AT in NEAT and changes in body composition. Further studies are needed to clarify the mechanisms behind the large variability in AT observed in NEAT and related changes in NEPA to better implement lifestyle-induced WL interventions.HighlightsNo significant differences were found for non-exercise activity thermogenesis (NEAT) or non-exercise physical activity (NEPA) after the weight loss (WL) intervention;Although a large variability was found for NEAT and NEPA, the interindividual variability regarding these outcomes is not relevant. The variability in these outcomes might reflect a large within-subject variability and/or a large degree of random measurement error;Although no energy conservation was observed in NEAT after moderate WL (mean values), further studies are needed to clarify the mechanisms behind the large variability in adaptive thermogenesis observed in NEAT and related changes in NEPA to better implement lifestyle-induced WL interventions.Trial registration: ClinicalTrials.gov identifier: NCT03031951.


Subject(s)
Energy Metabolism , Weight Loss , Humans , Female , Adult , Middle Aged , Male , Energy Metabolism/physiology , Weight Loss/physiology , Diet , Exercise/physiology , Body Composition/physiology , Thermogenesis/physiology
11.
J Sports Sci ; 40(16): 1857-1864, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36101017

ABSTRACT

It is unclear if different bioelectrical impedance (BI) devices provide similar results regarding raw parameters [Resistance (R), Reactance (Xc), Phase Angle (PhA), and Impedance (Z)] for the same population/individual undergoing a weight loss intervention. The aim was to evaluate the cross-sectional and longitudinal agreement of raw data obtained by two BI devices in former athletes with overweight/obesity. Fifty-nine participants [mean (SD): 43.5 (9.2) years, 30.5 (4.0) kg/m2, 42% females] were included. All the assessments were performed before and after a 4-months lifestyle intervention targeting weight loss (WL). BI parameters were assessed at 50 kHz by two devices: a BI spectroscopy (Xitron Technologies, 4200B, San Diego, USA) and a phase-sensitive single-frequency device (BIA 101 AKERN, Florence, Italy). Cross-sectionally, BIS provided lower mean values for all parameters (0.4% for R, 1.6% for Xc, 1.0% for PhA and 0.4% for Z, p <0.001) compared to SF-BIA. In individuals with a WL≥2.5% (n =18), no longitudinal differences were found in any of the raw parameters between devices (p≥0.128) and there was no proportional bias (p≥0.408). Despite small baseline differences in raw BI parameters, both devices agreed in tracking changes over time at the group level but interpretation should be careful at the individual level.


Subject(s)
Body Composition , Weight Loss , Female , Humans , Male , Cross-Sectional Studies , Electric Impedance , Athletes , Life Style
12.
Eur J Nutr ; 61(8): 4121-4133, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35833970

ABSTRACT

PURPOSE: Despite adaptive thermogenesis (AT) being studied as a barrier to weight loss (WL), few studies assessed AT in the resting energy expenditure (REE) compartment after WL maintenance. The aim of this study was twofold: (1) to understand if AT occurs after a moderate WL and if AT persists after a period of WL maintenance; and (2) if AT is associated with changes in body composition, hormones and energy intake (EI). METHODS: Ninety-four participants [mean (SD); BMI, 31.1(4.3)kg/m2; 43.0(9.4)y; 34% female] were randomized to intervention (IG, n = 49) or control groups (CG, n = 45). Subjects underwent a 1-year lifestyle intervention, divided in 4 months of an active WL followed by 8 months of WL maintenance. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry and REE by indirect calorimetry. Predicted REE (pREE) was estimated through a model using FM, FFM. EI was measured by the "intake-balance" method. RESULTS: For the IG, the weight and FM losses were - 4.8 (4.9) and - 11.3 (10.8)%, respectively (p < 0.001). A time-group interaction was found between groups for AT. After WL, the IG showed an AT of -85(29) kcal.d-1 (p < 0.001), and remained significant after 1 year [AT = - 72(31)kcal.d-1, p = 0.031]. Participants with higher degrees of restriction were those with an increased energy conservation (R = - 0.325, p = 0.036 and R = - 0.308, p = 0.047, respectively). No associations were found between diet adherence and AT. Following a sub-analysis in the IG, the group with a higher energy conservation showed a lower WL and fat loss and a higher initial EI. CONCLUSION: AT in REE occurred after a moderate WL and remained significant after WL maintenance. More studies are needed to better clarify the mechanisms underlying the large variability observed in AT and providing an accurate methodological approach to avoid overstatements. Future studies on AT should consider not only changes in FM and FFM but also the FFM composition.


Subject(s)
Energy Metabolism , Weight Loss , Humans , Female , Male , Thermogenesis , Body Composition , Athletes , Hormones , Basal Metabolism
13.
Int J Sport Nutr Exerc Metab ; 32(6): 479-490, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35894910

ABSTRACT

During the athletic season, changes in body composition occur due to fluctuations in energy expenditure and energy intake. Literature regarding changes of energy availability (EA) is still scarce. The aim was to estimate EA of athletes from nonweight and weight-sensitive sports during the athletic season (i.e., preparatory and competitive phase). Eighty-eight athletes (19.1 ± 4.2 years, 21.8 ± 2.0 kg/m2, 27% females, self-reported eumenorrheic) from five sports (basketball [n = 29]; handball [n = 7]; volleyball [n = 9]; swimming [n = 18]; and triathlon [n = 25]) were included in this observational study. Energy intake and exercise energy expenditure were measured through doubly labeled water (over 7 days and considering neutral energy balance) and metabolic equivalents of tasks, respectively. Fat-free mass (FFM) was assessed through a four-compartment model. EA was calculated as EA = (energy intake - exercise energy expenditure)/FFM. Linear mixed models, adjusted for sex, were performed to assess EA for the impact of time by sport interaction. Among all sports, EA increased over the season: basketball, estimated mean (SE): 7.2 (1.5) kcal/kg FFM, p < .001; handball, 14.8 (2.9) kcal/kg FFM, p < .001; volleyball, 7.9 (2.8) kcal/kg FFM, p = .006; swimming, 8.7 (2.0) kcal/kg FFM, p < .001; and triathlon, 9.6 (2.0) kcal/kg FFM, p < .001. Eleven athletes (12.5%) had clinical low EA at the preparatory phase and none during the competitive phase. During both assessments, triathletes' EA was below optimal, being lower than basketballers (p < .001), volleyballers (p < .05), and swimmers (p < .001). Although EA increased in all sports, triathlon's EA was below optimal during both assessments. Risk of low EA might be seasonal and resolved throughout the season, with higher risk during the preparatory phase. However, in weight-sensitive sports, namely triathlon, low EA is still present.


Subject(s)
Sports , Female , Humans , Male , Seasons , Athletes , Energy Intake , Body Composition , Energy Metabolism , Water
14.
Biology (Basel) ; 11(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35741420

ABSTRACT

BACKGROUND: Sitting or standing during prolonged periods is related to leg swelling. It is unknown if interrupting sedentary behavior can attenuate lower leg swelling. We aimed to examine if adding sit-to-stand transitions prevents lower leg swelling as compared with uninterrupted motionless standing and sitting, using localized bioelectrical impedance raw parameters. METHODS: Twenty adults participated in this crossover randomized controlled trial and acted out three conditions: (1) uninterrupted, motionless standing; (2) uninterrupted motionless sitting; (3) sit-to-stand transitions (1 min sitting followed by 1 min standing). Localized resistance (R), reactance (Xc), impedance (Z) and phase angle (PhA) were assessed at baseline, at 10 min and at 20 min for each condition. RESULTS: For sitting and standing conditions, R and Xc values decreased after 10 and 20 min. Uninterrupted sitting resulted in the highest decrease in R (ΔSit - ΔStand = -9.5 Ω (4.0), p = 0.019; ΔSit - ΔInt = -11.6 Ω (4.0), p = 0.005). For standardized R (R/knee height), sitting was the condition with a greater decrease (ΔSit - ΔStand = -30.5 Ω/m (13.4), p = 0.025; ΔSit - ΔInt = -35.0 Ω/m (13.5), p = 0.011). CONCLUSIONS: Interrupting sedentary behavior by changing from sit to stand position during short periods may be effective at preventing leg swelling.

15.
Obesity (Silver Spring) ; 30(5): 1004-1014, 2022 05.
Article in English | MEDLINE | ID: mdl-35347875

ABSTRACT

OBJECTIVE: This study aimed to explore the following: 1) the impact of Champ4Life's intervention on intuitive eating and food reward; and 2) associations between changes in eating behavior and changes in body composition. METHODS: A total of 94 former athletes (mean [SD], BMI = 31.1 [4.3] kg/m2 , age = 43.0 [9.4] years, 34% female) assigned to intervention (n = 49) and control groups (n = 45) underwent 4 months of active weight loss (WL) followed by 8 months of WL maintenance. Intuitive eating and food reward were assessed by the Intuitive Eating Scale and the Leeds Food Preference Questionnaire, respectively. RESULTS: The WL was -4.8% (4.9%) and 0.3% (2.6%) for the intervention and control groups, respectively. Participants reported a decrease in fat bias for explicit/implicit wanting and explicit liking after 4 months and 1 year. For intuitive eating, the unconditional permission to eat decreased after 4 months, and the body-food choice congruence increased after 1 year. Changes in unconditional permission to eat and in body-food choice congruence were positively and negatively associated with both Δweight and with Δfat mass, respectively. Changes in explicit wanting for fat and taste bias were associated with Δweight. CONCLUSIONS: Food reward decreased after a moderate WL intervention. Participants successfully maintained their reduced weight, and most of the changes in eating behavior remained significant at the end of the follow-up period. Lifestyle interventions aiming at WL should also consider intuitive eating and food reward.


Subject(s)
Overweight , Weight Loss , Adult , Athletes , Eating , Feeding Behavior , Female , Food Preferences , Humans , Male , Obesity/therapy , Overweight/therapy , Reward
16.
Clin Nutr ; 41(3): 673-679, 2022 03.
Article in English | MEDLINE | ID: mdl-35151123

ABSTRACT

In this study, we aimed to analyse the relationship between body composition and bioelectrical variables in children and adolescents. The sample was composed of 6801 individuals (4035 males; 2766 females) aged 8-20 years included in the National Health and Nutrition Examination Survey (NHANES) years 1999-2004. Classic and specific bioelectrical impedance vector analysis (BIVA) were applied and compared with dual-energy X-ray absorptiometry (DXA) for the evaluation of fat mass (FM) and fat-free mass (FFM), and bioimpedance spectroscopy (BIS) for the evaluation of intra-cellular water (ICW), extra-cellular water (ECW), and total body water (TBW). Fat-free mass index (FFMI) was calculated. Spearman's correlation, regression, and depth-depth analyses were applied. The evaluation of body composition with BIVA agreed well with that of DXA or BIS, independently of sex, age, and ethnicity: classic BIVA was mostly sensitive to differences in TBW, ECW/ICW, whereas specific BIVA to differences in %FM, FFMI, and ECW/ICW. The depth-depth analysis confirmed the associations of classic BIVA (coeff. 0.500, p < 0.001), and specific BIVA (coeff. 0.512, p < 0.001), also considering the significant effect of age (p < 0.001). In classic BIVA the association was slightly stronger in females (by 0.03, p = 0.042) and among Blacks (0.06, p = 0.002), whereas in specific BIVA it was stronger by 0.06 (p < 0.001) in females and similar among ethnic groups. The combined use of the two BIVA approaches represents a valuable tool for complete evaluation of body composition in growth studies, for the prevention and monitoring of malnutrition, and the monitoring of the performance in young athletes.


Subject(s)
Body Composition , Water , Absorptiometry, Photon , Adolescent , Body Water , Child , Electric Impedance , Female , Humans , Male , Nutrition Surveys
17.
Br J Sports Med ; 56(7): 394-401, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34598935

ABSTRACT

OBJECTIVES: Many athletes struggle in managing the end of their career, often gaining weight and adopting unhealthy lifestyles. Lifestyle programmes targeting former athletes who have gained substantial fat mass (FM) postsports career are lacking. We studied the effects of the Champ4Life programme on body composition and other health-related outcomes in former elite athletes with overweight or obesity. METHODS: Ninety-four former athletes(42.4±7.3 y, 34.0% female) were recruited and randomly assigned to either an intervention group (IG; n=49) or a control group (CG; n=45). The IG attended 12 educational sessions addressing physical activity, weight management and nutrition. They also had a nutrition appointment aimed to prescribe a moderate caloric deficit(~300-500 kcal/day). Dual-energy X-ray absorptiometry was used to assess body composition. The Short-Form Health Survey-36 questionnaire was used to measure general health-related quality of life. Blood samples were collected to assess cardiometabolic health parameters. RESULTS: At 12 months, the IG lost more weight (estimated difference (ED)=-5.3 kg; -6.9 to -3.8), total FM (ED=-4.1 kg; -5.4 to -2.8) and abdominal FM (ED=-0.49 kg; -0.64 to -0.33) than did the CG (p's<0.001). Cardiometabolic health markers also improved significantly (p<0.05) more in the IG at 12 months (insulin (ED=-4.9 µU/mL;-8.0 to -1.8); homoeostatic model assessment (ED=-1.2; -2.1 to -0.4); total cholesterol (ED=-21.8 mg/dL; -35.4 to -8.2); low-density lipoprotein (ED=18.2 mg/dL;-29.2 to -7.1)), as did quality-of-life dimensions (physical functioning (ED=11.7; 6.5 to 16.9); physical role (ED=17.6; 2.1 to 33.0); general health (ED=19.4; 11.4 to 27.4); vitality (ED=13.3; 5.3 to 21.3) and mental health (ED=12.3; 4.1 to 20.6)). CONCLUSIONS: The Champ4Life programme was effective in substantially reducing total and abdominal FM while preserving fat-free mass and improving health-related markers. These findings will enable evidence-based decisions when implementing lifestyle interventions targeting retired elite athletes. TRIAL REGISTERATION NUMBER: NCT03031951.


Subject(s)
Quality of Life , Sedentary Behavior , Athletes , Female , Humans , Life Style , Male , Weight Loss
18.
Eur J Nutr ; 61(3): 1405-1416, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34839398

ABSTRACT

PURPOSE: The aim of this study was (1) to assess AT through 13 different mathematical approaches and to compare their results; and (2) to understand if AT occurs after moderate WL. METHODS: Ninety-four participants [mean (SD); BMI, 31.1 (4.3) kg/m2; age, 43.0 (9.4) years; 34% females] underwent a 1-year lifestyle intervention (clinicaltrials.gov ID: NCT03031951) and were randomized to intervention (IG, n = 49) or control groups (CG, n = 45), and all measurements were made at baseline and after 4 months. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry and REE by indirect calorimetry. AT was assessed through 13 different approaches, varying in how REE was predicted and/or how AT was assessed. RESULTS: IG underwent a mean negative energy balance (EB) of 270 (289) kcal/day, p < 0.001), resulting in a WL of - 4.8 (4.9)% and an FM loss of - 11.3 (10.8)%. Regardless of approach, AT occurred in the IG, ranging from ~ - 65 to ~ - 230 kcal/day and three approaches showed significant AT in the CG. CONCLUSIONS: Regardless of approach, AT occurred after moderate WL in the IG. AT assessment should be standardized and comparisons among studies with different methodologies to assess AT must be avoided.


Subject(s)
Obesity , Thermogenesis , Adult , Basal Metabolism , Body Composition , Calorimetry, Indirect , Energy Metabolism , Female , Humans , Male , Weight Loss
19.
Biology (Basel) ; 10(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204604

ABSTRACT

BACKGROUND: specific bioelectrical impedance vector analysis (BIVA) has been proposed as an alternative bioimpedance method for evaluating body composition. This investigation aimed to verify the ability of specific BIVA in identifying changes in fat mass after a 16-week lifestyle program in former athletes. METHODS: The 94 participants included in the Champ4life project (clinicaltrials.gov: NCT03031951) were randomized into intervention (n = 49) and control (n = 45) groups, from which 82 athletes completed the intervention (age 43.9 ± 9.2 y; body mass index 31.1 ± 4.6 kg/m2). Fat mass was estimated by dual-energy X-ray absorptiometry. Bioelectric resistance, reactance, phase angle, and vector length were assessed by bioelectric impedance spectroscopy, and the BIVA procedure was applied. RESULTS: A significant (p < 0.05) group x time interaction for fat mass, specific resistance, reactance, and vector length was found. Fat mass and vector length significantly (p < 0.05) decreased in the intervention group, while no change was measured in the control group. Considering the participants as a whole group, changes in vector length were associated with changes in fat mass percentage (r2 = 0.246; ß = 0.33; p < 0.001) even after adjusting for age, sex, and group (R2 = 0.373; ß = 0.23; p = 0.002). CONCLUSIONS: The specific BIVA approach is suitable to track fat mass changes during an intervention program aimed to reduce body fat in former athletes.

20.
Article in English | MEDLINE | ID: mdl-34205575

ABSTRACT

BACKGROUND: An increasing body of evidence indicates that the phase angle (PhA) can be applied as a marker of nutritional status, disease prognosis, and mortality probability. Still, it is not known whether PhA can be used as an indicator of muscular quantity and strength and maximal aerobic capacity in overweight/obese former highly active individuals, an understudied population. This study aimed to analyze the association between PhA with skeletal muscle mass, maximal isometric strength, and maximal aerobic capacity through VO2max, in overweight/obese and inactive former athletes. METHODS: Cross-sectional information of 94 (62 males) former adult athletes (age: 43.1 ± 9.4 years old; body mass index: 31.4 ± 4.8 kg/m2) taking part in a weight-loss clinical trial was analyzed. Total fat and fat-free mass were determined by dual-energy X-ray absorptiometry, while skeletal muscle mass was predicted from appendicular lean soft tissue. Values for upper- and lower-body maximal isometric strength were assessed by handgrip and leg press dynamometry. VO2max was determined by indirect calorimetry through a graded exercise test performed on a treadmill. RESULTS: PhA was associated with skeletal muscle mass (r = 0.564, p < 0.001), upper-body strength (r = 0.556, p < 0.001), lower-body strength (r = 0.422, p < 0.001), and VO2max (r = 0.328, p = 0.013). These relationships remained significant for skeletal muscle mass (ß = 2.158, p = 0.001), maximal isometric strength (upper-body: ß = 2.846, p = 0.012; low-er-body: ß = 24.209, p = 0.041) after adjusting for age, sex, and fat mass but not for VO2max (ß = -0.163, p = 0.098). CONCLUSION: Our findings indicated that former athletes with higher values of PhA exhibited greater muscle mass and strength, despite sex, age, and body composition, which suggests that this simple raw BI parameter can be utilized as an indicator of muscle quantity and functionality in overweight/obese former athletes.


Subject(s)
Body Composition , Hand Strength , Adult , Athletes , Cross-Sectional Studies , Humans , Male , Middle Aged , Muscle Strength , Muscle, Skeletal , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL
...